LSAT light machine gun

LSAT light machine gun

The LMGs built made a 44% and 43% reduction of weight (for the cased telescoped and the caseless weapons, respectively). Secondary goals have also been met: the LMG has the potential to improve battlefield effectiveness (due to its simpler and more consistent weapon action, its light weight and low recoil, and its stiffer barrel); its use of recoil compensation (with a long-stroke gas-system, for example) has produced positive feedback regarding controllability; the simpler mechanism of the LMG is both more reliable and easier to maintain; a rounds counter has been integrated to improve maintainability, and the weapon is capable of accepting other electronic devices; improved materials used in the chamber and barrel have reduced heat load on the weapon; and the weapon cost is equivalent to the existing M249. The standard LSAT machine gun weighs 9.4 lb empty, compared to 17.6 lb for a standard SAW. Cased telescoped ammunition weighs 40% less than brass-cased ammo, so a 100-round ammunition belt weighs about 2 lb for the LSAT, compared to 3.3 lb for a brass-cased belt.
The LMG design is a traditionally laid-out machine-gun. It has several features conducive to its use as a light machine gun, such as a quick-change barrel, a vented fore-grip, a belt feeding mechanism, provisions for the use of an ammunition pouch, and a rate of fire of approximately 600 RPM. Other features include its light weight, an ammunition counter, and a highly stiff and heat resistant barrel achieved with the use of fluting and specialized alloys.When firing, the weapon's chamber swings around a longitudinal pivot; it swings from horizontally parallel with the pivot (the firing position) to vertically parallel (the feed position), and back again.[9] A long-stroke gas-piston is used to operate this action. A round is fed into the chamber at the feed position using a rammer, and the new round also serves to push a spent or dud round out of the far end of the chamber. Such rounds are pushed forward, parallel to the barrel, and they slide into a separate mechanism that ejects them out of one side of the gun. The advantages of this whole action include its simplicity, its isolation of the chamber from barrel heat, and its positive control of round movement from extraction to ejection. In the caseless firing version of the weapon, another mechanism is introduced to seal the chamber during firing, accounting for the slightly increased weight of the caseless version.

C17 Globemaster


The C-17 is 174 feet (53 m) long and has a wingspan of about 170 feet (52 m). It can airlift cargo fairly close to a battle area. The size and weight of U.S. mechanized firepower and equipment have grown in recent decades from increased air mobility requirements, particularly for large or heavy non-palletized outsize cargo.

The C-17 is powered by four Pratt & Whitney F117-PW-100 turbofan engines, which are based on the commercial Pratt and Whitney PW2040 used on the Boeing 757. Each engine is rated at 40,400 lbf (180 kN) of thrust. The engine's thrust reversers direct engine exhaust air upwards and forward, reducing the chances of foreign object damage by ingestion of runway debris, and providing enough reverse thrust to back the aircraft up on the ground while taxiing. The thrust reversers can also be used in flight at idle-reverse for added drag in maximum-rate descents. In vortex surfing tests performed by C-17s, up to 10% fuel savings were reported.

A Royal Australian Air Force C-17 landing at Kharkiv International Airport, showing its landing gear
The aircraft requires a crew of three (pilot, copilot, and loadmaster) for cargo operations. Cargo is loaded through a large aft ramp that accommodates rolling stock, such as a 69-ton (63-metric ton) M1 Abrams main battle tank, other armored vehicles, trucks, and trailers, along with palletized cargo. The cargo compartment is 88 feet (26.82 m) long by 18 feet (5.49 m) wide by 12 feet 4 inches (3.76 m) high. The cargo floor has rollers for palletized cargo that can be flipped to provide a flat floor suitable for vehicles and other rolling stock.


Maximum payload of the C-17 is 170,900 lb (77,500 kg), and its Maximum takeoff weight is 585,000 lb (265,350 kg). With a payload of 160,000 lb (72,600 kg) and an initial cruise altitude of 28,000 ft (8,500 m), the C-17 has an unrefueled range of about 2,400 nautical miles (4,400 km) on the first 71 aircraft, and 2,800 nautical miles (5,200 km) on all subsequent extended-range models that include a sealed center wing bay as a fuel tank. Boeing informally calls these aircraft the C-17 ER.The C-17's cruise speed is about 450 knots (833 km/h) (Mach 0.74). It is designed to airdrop 102 paratroopers and their equipment. The U.S. Army's Ground Combat Vehicle is to be transported by the C-17.

The C-17 is designed to operate from runways as short as 3,500 ft (1,064 m) and as narrow as 90 ft (27 m). In addition, the C-17 can operate from unpaved, unimproved runways (although with greater chance of damage to the aircraft). The thrust reversers can be used to back the aircraft and reverse direction on narrow taxiways using a three- (or more) point turn. The plane is designed for 20 man-hours of maintenance per flight hour, and a 74% mission availability rate.

F22 Raptor

F 22 raptors over the pacific ocean

The F-22 Raptor is a fifth-generation fighter that is considered fourth generation in stealth aircraft technology by the USAF. It is the first operational aircraft to combine supercruise, supermaneuverability, stealth, and sensor fusion in a single weapons platform.The Raptor has large shoulder-mounted trapezoidal wings, four empennage surfaces, and a retractable tricycle landing gear. Flight control surfaces include leading and trailing-edge flaps, ailerons, rudders on the canted vertical stabilizers, and all-moving horizontal tails; these surfaces also serve as speed brakes.
The aircraft's dual Pratt & Whitney F119-PW-100 afterburning turbofan engines are closely spaced and incorporate pitch-axis thrust vectoring nozzles with a range of ±20 degrees; each engine has maximum thrust in the 35,000 lbf (156 kN) class.The F-22's thrust to weight ratio in typical combat configuration is nearly at unity in maximum military power and 1.25 in full afterburner. Maximum speed without external stores is estimated to be Mach 1.82 during supercruise and greater than Mach 2 with afterburners.

The F-22 is among only a few aircraft that can supercruise, or sustain supersonic flight without using fuel-inefficient afterburners; targets can be intercepted which subsonic aircraft would lack the speed to pursue and an afterburner-dependent aircraft would lack the fuel to reach. The Raptor's high operating altitude is also a significant tactical advantage over prior fighters. The use of internal weapons bays permits the aircraft to maintain comparatively higher performance over most other combat-configured fighters due to a lack of aerodynamic drag from external stores. The F-22's structure contains extensive amounts of high-strength materials to withstand stress and heat of sustained supersonic flight. Respectively, titanium alloys and composites comprise 39% and 24% of the aircraft's structural weight.

An Air Force F-22 Raptor executes a supersonic flyby over the flight deck of USS John C. Stennis

The F-22 is highly maneuverable at both supersonic and subsonic speeds. Computerized flight control system and full authority digital engine control (FADEC) make the aircraft highly departure resistant and controllable at aggressive pilot inputs.The Raptor's relaxed stability and powerful thrust vectoring powerplants enable the aircraft to turn tightly and perform very high alpha (angle of attack) maneuvers such as the Herbst maneuver (J-turn) and Pugachev's Cobra. The aircraft is also capable of maintaining over 60° alpha while having some roll control.
The Raptor's aerodynamic performance, sensor fusion, and stealth work together for increased effectiveness. Altitude, speed, and advanced active and passive sensors allow the aircraft to spot targets at considerable ranges and increase weapons range; altitude and speed also complement stealth's ability to increase the aircraft's survivability against ground defenses such as surface-to-air missiles
WEAPONS
For stealth, the F-22 carries weapons in internal bays.
 The doors for the center and side bays are open
note the six LAU-142/A AMRAAM Vertical Eject Launchers (AVEL).

The Raptor has three internal weapons bays: a large bay on the bottom of the fuselage, and two smaller bays on the sides of the fuselage, aft of the engine intakes. The main bay can accommodate six LAU-142/A launchers for beyond-visual-range missiles and each side bay has an LAU-141/A launcher for short-range missiles.Four of the launchers in the main bay can be replaced with two bomb racks that can each carry one 1,000 lb (450 kg) or four 250 lb (110 kg) bombs. Carrying armaments internally maintains the aircraft's stealth and minimizes additional drag. Missile launches require the bay doors to be open for less than a second, during which hydraulic arms push missiles clear of the aircraft; this is to reduce vulnerability to detection and to deploy missiles during high speed flight.
The F-22 can also carry air-to-surface weapons such as bombs with Joint Direct Attack Munition (JDAM) guidance and the Small-Diameter Bomb, but cannot self-designate for laser-guided weapons. Internal air-to-surface ordnance is limited to 2,000 lb.An internally mounted M61A2 Vulcan 20 mm cannon is embedded in the right wing root with the muzzle covered by a retractable door to maintain stealth.The radar projection of the cannon fire's path is displayed on the pilot's head-up display.

F22 with AIM 120 in the external pylon
The F-22's high cruise speed and altitude increase the effective ranges of its munitions, it has 50% greater employment range for the AIM-120 AMRAAM than prior platforms, and range will be further extended with the introduction of the AIM-120D. While specifics are classified, it is expected that JDAMs employed by F-22s will have twice or more the effective range of legacy platforms.[144] In testing, an F-22 dropped a GBU-32 JDAM from 50,000 feet (15,000 m) while cruising at Mach 1.5, striking a moving target 24 miles (39 km) away.
While the F-22 typically carries weapons internally, the wings include four hardpoints, each rated to handle 5,000 lb (2,300 kg). Each hardpoint can accommodate a pylon that can carry a detachable 600 gallon external fuel tank or a launcher holding two air-to-air missiles; the two inboard hardpoints are "plumbed" for external fuel tanks. The use of external stores degrades the aircraft's stealth and kinematic performance; after releasing stores the external attachments can be jettisoned to restore those characteristics. A stealthy ordnance pod and pylon was being developed to carry additional weapons in the mid-2000s.